

RAM-SE’08 – ECOOP’08 Workshop on
Reflection, AOP, and Meta-Data for Software Evolution
(Proceedings)

Paphos, 7th of July 2008

Edited by

Walter Cazzola - Università degli Studi di Milano, Italy
Shigeru Chiba - Tokyo Institute of Technology, Japan
Manuel Oriol - ETH Zürich, Switzerland
Gunter Saake - Otto-von-Guericke-Universität Magdeburg, Germany

Preprint no. xx of University of Magdeburg.

Foreword

Software evolution and adaptation is a research area, as the name states, in
continuous evolution, that offers stimulating challenges for both academic and
industrial researchers. The evolution of software systems, to face unexpected
situations or just for improving their features, relies on software engineering
techniques and methodologies. Nowadays a similar approach is not applicable
in all situations e.g., for evolving nonstopping systems or systems whose code is
not available.

Reflection and aspect-oriented programming are young disciplines that are
steadily attracting attention within the community of object-oriented researchers
and practitioners. The properties of transparency, separation of concerns, and ex-
tensibility supported by reflection and aspect-oriented programming have largely
been accepted as useful for software development and design. Reflective fea-
tures have been included in successful software development technologies such
as the Java language and the .NET framework. Reflection has proved to be
useful in some of the most challenging areas of software engineering, including
Component-Based Software Development (CBSD), as demonstrated by exten-
sive use of the reflective concept of introspection in the Enterprise JavaBeans
component technology.

Features of reflection such as transparency, separation of concerns, and exten-
sibility seem to be perfect tools to aid the dynamic evolution of running systems.
They provide the basic mechanisms for adapting (i.e., evolving) a system without
directly altering the existing system. Aspect-oriented programming can simplify
code instrumentation providing a few mechanisms, such as the join point model,
that allow for the exposure of some points (join points) in the code or in the
computation that can be modified by weaving new functionality (aspects) at
those points either at compile-time, load-time, or ruin-time. Meta-data repre-
sent the glue between the system to be adapted and how it has to be adapted;
the techniques that rely on meta-data can be used to inspect the system and
to dig out the necessary data for designing the heuristic that the reflective and
aspect-oriented mechanisms use for managing the evolution.

It is our belief that current trends in ongoing research in reflection, aspect-
oriented programming and software evolution clearly indicate that an inter-
disciplinary approach would be of utmost relevance for both. Therefore, we felt
the necessity of investigating the benefits that the use of these techniques on the
evolution of object-oriented software systems could bring. In particular we were
and we continue to be interested in determining how these techniques can be
integrated together with more traditional approaches to evolve a system and in
discovering the benefits we get from their use.

i

Software evolution may benefit from a cross-fertilization with reflection and
aspect-oriented programming in several ways. Reflective features such as trans-
parency, separation of concerns, and extensibility are likely to be of increasing
relevance in the modern software evolution scenario, where the trend is towards
systems that exhibit sophisticated functional and non-functional requirements.
For example, systems that are built from independently developed and evolved
COTS (commercial off-the-shelf) components; that support plug-and-play and
end-user directed reconfigurability; that make extensive use of networking and
internetworking; that can be automatically upgraded through the Internet; that
are open; and so on. Several of these issues bring forth the need for a system
to manage itself to some extent, to inspect components’ interfaces dynamically,
to augment its application-specific functionality with additional properties, and
so on. From a pragmatic point of view, several reflective and aspect-oriented
techniques and technologies lend themselves to be employed in addressing these
issues. On a more conceptual level, several key reflective and aspect-oriented
principles could play an interesting role as general software design and evolution
principles. Even more fundamentally, reflection and aspect-oriented program-
ming may provide a cleaner conceptual framework than that underlying the
rather ‘ad-hoc’ solutions embedded in most commercial platforms and technolo-
gies, including CBSD technologies, system management technologies, and so on.
The transparent nature of reflection makes it well suited to address problems
such as evolution of legacy systems, customizable software, product families,
and more. The scope of application of reflective and aspect-oriented concepts
in software evolution conceptually spans activities related to all the phases of
software life-cycle, from analysis and architectural design to development, reuse,
maintenance, and, therefore also evolution.

The overall goal of this workshop – as well as of its previous editions –
was that of supporting circulation of ideas between these disciplines. Several
interactions were expected to take place between reflection, aspect-oriented pro-
gramming and meta-data for the software evolution, some of which we cannot
even foresee. Both the application of reflective or aspect-oriented techniques and
concepts to software evolution are likely to support improvement and deeper un-
derstanding of these areas. This workshop has represented a good meeting-point
for people working in the software evolution area, and an occasion to present
reflective, aspect-oriented, and meta-data based solutions to evolutionary prob-
lems, and new ideas straddling these areas, to provide a discussion forum, and
to allow new collaboration projects to be established. The workshop is a full day
meeting. One part of the workshop will be devoted to presentation of papers,
and another to panels and to the exchange of ideas among participants.

In this fifth edition of the workshop, we had an interesting keynote by Hide-
hiko Masuhara that has investigated why the abstraction mechanisms as AOP
in programming languages are crucial for modular software development. This
keynote was particularly interesting and raised several issues and lively discus-
sion among the workshop attendees.

ii

This volume gathers together all the position papers accepted for presentation
at the fifth edition of the Workshop on Reflection, AOP and Meta-Data for
Software Evolution (RAM-SE’08), held in Paphos on the 7th of July, during the
ECOOP’08 conference. We received many interesting submissions and due to
time restrictions and to guarantee the event quality we had to select only a few
of them, the papers that, in our opinion, are more or less evidently interrelated
to fuel a more lively discussion during the workshop. Now, a few months after
the workshop, we can state that we achieved our goal. The presentations were
interesting and the subsequent panels stimulated a lively and rich set of ideas
and proposals. We are sure that in the next months we will see many papers by
the workshop attendees and the fruit of such lively discussions.

The success of the workshop is mainly due to the people that have attended
it and to their effort to participate to the discussions. The following is the list
of the attendees in alphabetical order.

Arcelli, Francesca Figueiredo, Eduardo Masuhara, Hidehiko
Bierman, Gavin Götz, Sebastian Oriol, Manuel
Cazzola, Walter Guerra, Eduardo Ostrowski, Krzystof
Cech Previtali, Susanne Havinga, Wilke Pukall, Mario
Chiba, Shigeru Herrmann, Stephan Sanen, Frans
de Roo, Arjan Kakousis, Constantinos Vandemonde, Yves

We have also to thank the Department of Informatics and Communication
of the University of Milan, the Department of Mathematical and Computing
Sciences of the Tokyo institute of Technology and the Institute für Technische
und Betriebliche Informationssysteme, Otto-von-Guericke-Universität Magde-
burg for their various supports.

January 2009 W. Cazzola, S. Chiba, M. Oriol and G. Saake
RAM-SE’08 Organizers

iii

iv

Contents

Classic Software Evolution

A Case Study for Aspect Based Updating. 1
Susanne Cech Previtali and Thomas R. Gross
(ETH Zürich, Switzerland).

Runtime Adaptations within the QuaD2-Framework. 7
Steffen Mencke, Martin Kunz and Mario Pukall
(Otto von Guericke University Magdeburg, Germany).

Modeling Context-Dependent Aspect Interference Using Default Logics. 15
Frans Sanen, Eddie Truyen and Wouter Joosen
(Katholieke Universiteit Leuven, Belgium).

Exploring Role Based Adaptation. 21
Sebastian Götz and Ilie Şavga
(Dresden University of Technology, Germany).

Annotations for Seamless Aspect Based SW Evolution. 27
Susanne Cech Previtali and Thomas R. Gross
(ETH Zürich, Switzerland).

Object Roles and Runtime Adaptation in Java. 33
Mario Pukall
(Otto von Guericke University Magdeburg, Germany).

v

vi

A Case Study for Aspect-Based Updating

Susanne Cech Previtali and Thomas R. Gross

Department of Computer Science, ETH Zurich, Switzerland

Abstract. Rather than upgrading a software system to the next version
by installing a new binary, software systems could be updated “on-the-
fly” during their execution. We are developing a software evolution sys-
tem that leverages aspect technology. As changes typically spread across
several classes, we can handle updates like other crosscutting concerns:
we encapsulate all changes, constituting a logical update, in one aspect.
In this paper, we evaluate our approach. We report on a case study about
the evolution of a Java application. The analysis provides details about
how classes change between versions, and how these changes would be
expressed in terms of updating aspects. Unfortunately, not all kinds of
changes can be expressed using the aspect model. The results of our
study, however, reveal that many changes fit our aspect-based approach.

1 Introduction

Dynamic software evolution represents an interesting technique to update soft-
ware systems at run-time and is particularly helpful for systems that must be
continuously available and up-to-date.

Our approach to the dynamic evolution of object-oriented software systems [1,
3] treats updates in a manner similar to crosscutting concerns in aspect-oriented
programming: all changes that belong to a logical update are encapsulated in
one aspect. We are developing a software evolution system that implements this
idea. To compute the required updates, the system compares statically two com-
plete versions of a Java program and deduces their structural differences. The
structural differences constitute the individual changes. The system identifies the
dependences between the changes and encapsulates these changes in an aspect.
The dynamic aspect system PROSE [6–8] achieves dynamic software evolution
by dynamically integrating the aspects.

In this paper, we report on a case study of an open-source Java program
to determine if the evolution steps can be expressed as a sequence of updating
aspects. The result of this case study reveals that—although not all evolution
steps can be handled this way—most changes are limited to the implementation
of methods and thus do not change the specification of classes. We show that
many evolution steps can be decomposed and thus modularized, as indeed the
actual changes concern “clusters” of few interacting classes.

The remainder of the paper is organized as follows: Sect. 2 explains the
methodology of the case study. Sect. 3 presents the results of the evaluation and
discusses the applicability of the updating model based on the results of the
study. Sect. 4 concludes the paper.

1

2 Case Study

We have implemented a system to analyze compiled Java programs. All classes
constituting the old and the new version of a program are compared to deduce
the structural differences. First, classes, and recursively fields and methods, are
matched as pairs to compute the sets of enduring, added, and removed entities.
Second, the enduring entities are compared to compute the sets of unchanged
and modified entities and the kinds of modifications. Based on the structural
differences, the tool creates a method call-graph taking into account the static
and dynamic target types and deduces the dependences between the changes. We
refer to earlier work for a detailed description of the system architecture [1] and
the corresponding algorithms [3]. Note that our current implementation matches
two versions based on only the name and thus handles a rename as an removal
and addition.

For the case study, we describe the evolution of a program from different
points of view. First, we present the number of unchanged, modified, added, and
removed classes. Then, we detail specific changes of the modified classes based on
the actual modifications between two versions of an analyzed application. This
data is based on the information available in the class file [4]: A class header
stores the direct super-class and the interfaces a class implements, as well as the
type parameters of generic classes. The header includes the access modifiers that
determine whether a class is e.g., abstract, final, or synthetic. Furthermore, the
header records the Java version. A field is characterized by its type, the access
modifiers, the initial value, and generic parameters. A method is described by
its body, the access modifiers, the return and argument types, exceptions, and
generic parameters. Last, we discuss the updating aspects necessary to evolve
the different versions.

3 Results

We have chosen Apache Tomcat 5.5, which implements version 2.4 of the Servlet
and version 2.0 of the JSP specification, because it provides more than 20 re-
leases. We downloaded the compiled releases of the “deployer” distribution and
included all available Jar-files. tomcat-5.5 initially consists of 399 classes, 1678
fields, and 3706 methods. In its latest release, tomcat-5.5 includes 461 classes,
1902 fields, and 4348 methods.

The first part of Table 1 shows the coarse-grained evolution of tomcat-5.5.
Mostly, classes are not changed between two versions except for release 5.5.1
when 60% of the existing 399 classes were modified. Classes were added only
in six versions. With three exceptions, classes are never removed. Fields are
mostly stable, on average 99% are not changed. Only in nine versions, fields
are modified; and only in eleven versions, fields are removed. In eleven versions,
fields are added; in particular, in version 5.5.3, 177 fields are added. Similar to
fields, methods are very stable. On average, only 1% of the methods changes,
less than 1% are added or removed.

2

Table 1. Evolution of tomcat-5.5.

E
vo

lu
ti
o
n

M
o
d
ifi

ca
ti
o
n

C
la

ss
es

F
ie

ld
s

M
et

h
o
d
s

C
la

ss
es

F
ie

ld
s

M
et

h
o
d
s

Unchanged

Modified

Added

Removed

Unchanged

Modified

Added

Removed

Unchanged

Modified

Added

Removed

Methods

Version

Fields

Super-class

Interfaces

Access

Type

Value

Body

Return type

Argument types

Access

Exceptions

5
.5

.0

→
5
.5

.1
1
6
4

2
3
5

0
0

1
6
7
6

1
3

1
3
6
0
1

1
0
4

6
1

7
7

2
2
9

5
0

0
1

0
0

1
0
4

0
0

0
0

→
5
.5

.2
3
8
4

1
5

0
0

1
6
7
6

0
0

4
3
6
6
8

4
1

1
2

1
5

0
3

0
0

0
0

0
4
1

0
0

0
0

→
5
.5

.3
3
6
6

3
1

4
0

2
1
6
4
0

0
1
7
7

3
6

3
6
1
3

5
6

4
8
7

4
1

3
1

0
7

0
0

0
0

0
5
6

1
1

0
0

→
5
.5

.4
4
2
2

1
5

0
0

1
8
1
6

0
4

1
4
1
1
4

3
8

5
4

1
5

0
2

0
0

0
0

0
3
8

0
0

0
0

→
5
.5

.5
4
2
5

1
2

1
0

1
8
1
9

1
1

0
4
1
0
8

4
9

5
0

1
2

0
1

0
0

0
1

0
4
9

1
0

0
0

→
5
.5

.6
4
3
0

8
0

0
1
8
2
1

0
0

0
4
1
3
3

2
9

0
0

8
0

0
0

0
0

0
0

2
9

0
0

0
0

→
5
.5

.7
4
2
3

1
5

1
0

1
8
2
0

0
1
0

1
4
1
2
2

3
8

2
2

2
1
5

0
1

2
0

0
0

0
3
8

0
0

0
0

→
5
.5

.8
4
2
0

1
9

0
0

1
8
2
8

2
2

0
4
1
3
8

4
4

2
0

1
8

0
3

0
0

0
2

0
4
4

1
0

0
0

→
5
.5

.9
4
0
3

3
6

1
0

1
8
1
6

1
3

1
9

3
4
0
7
8

9
4

3
1

1
2

3
6

0
1
8

0
0

1
3

0
0

9
4

1
1

0
0

→
5
.5

.1
0

4
1
3

2
5

1
2

1
8
4
1

0
1
1

7
4
1
3
6

6
1

1
5

6
2
5

0
5

0
0

0
0

0
6
0

1
0

0
0

→
5
.5

.1
1

4
3
0

9
0

0
1
8
5
2

0
0

0
4
1
8
2

3
0

0
0

9
0

0
0

0
0

0
0

3
0

0
0

0
0

→
5
.5

.1
2

4
1
7

1
7

1
7

5
1
8
4
8

0
2
1

4
4
1
5
9

4
1

6
1

1
2

1
7

0
2

0
0

0
0

0
4
1

0
0

1
0

→
5
.5

.1
3

4
3
5

1
6

0
0

1
8
6
8

1
0

0
4
2
1
8

4
3

3
0

1
6

0
1

0
0

0
1

0
4
3

0
0

0
0

→
5
.5

.1
4

4
4
2

9
0

0
1
8
6
8

1
0

0
4
2
3
0

3
4

0
0

9
0

1
0

0
0

1
0

3
4

0
0

0
0

→
5
.5

.1
5

4
4
0

1
1

0
0

1
8
6
8

1
1

0
4
2
2
6

3
8

1
0

1
1

0
2

0
0

0
0

1
3
8

0
0

0
0

→
5
.5

.1
6

4
4
0

1
1

0
0

1
8
7
0

0
0

0
4
2
3
2

3
3

0
0

1
1

0
0

0
0

0
0

0
3
3

0
0

0
0

→
5
.5

.1
7

4
4
1

1
0

0
0

1
8
7
0

0
0

0
4
2
3
3

3
2

0
0

1
0

0
0

0
0

0
0

0
3
2

0
0

0
0

→
5
.5

.2
0

4
3
9

1
2

0
0

1
8
6
5

0
0

5
4
2
2
7

3
8

0
0

1
2

0
1

0
0

0
0

0
3
8

0
0

0
0

→
5
.5

.2
3

4
2
3

2
8

0
0

1
8
5
7

4
3

4
4
1
9
7

6
5

4
3

2
7

0
6

0
0

4
0

0
6
5

0
0

0
0

→
5
.5

.2
5

4
3
1

2
0

0
0

1
8
5
7

1
0

6
4
2
1
4

5
0

0
2

2
0

0
4

0
0

1
0

0
5
0

0
1

0
0

→
5
.5

.2
6

4
2
5

2
4

1
2

2
1
8
4
6

0
5
6

1
2

4
1
3
4

9
5

1
1
9

3
5

2
4

1
9

0
1

0
0

0
9
5

0
2

5
1

3.1 Modifications

In the following, we discuss the specific modifications shown in the second part
of Table 1. We first present modified classes, then fields and methods.

3

Class modifications. The most frequent changes are method modifications. Only
in version 5.5.1, the most frequent change regards the change of the Java ver-
sion, when 60% of the classes were compiled from Java 1.2 to Java 1.4. The Java
version (consisting of a major and minor version number in the class file header)
defines the version of the class file format and consequently the minimal required
Java virtual machine. A change in that version number may either reflect the mi-
gration of the Java development tools or the conscious usage of a new language
feature. As we use the compiled application in bytecode form, we do not distin-
guish between the two cases. The inheritance structure of tomcat-5.5 is very
stable. Only in version 5.5.7, two classes extended different super-classes; and in
version 5.5.26, one class removed an interface (i.e., java/lang/Serializable). Ac-
cess modifiers and generic parameters are never changed (and are consequently
omitted in the table).

Field modifications. In tomcat-5.5, fields are rarely changed. The access mod-
ifiers account for the most frequent change. This change consists of removing
the modifier static (12 private fields and one protected in 5.5.9, two private
fields in 5.5.23, one private field in 5.5.25). There is one change of the initial
value in release 5.5.15. The few type changes refer to changes of a container
type (i.e., java/util/Vector to java/util/List) or different representation (i.e., us-
ing a java/lang/ThreadLocal rather than a java/util/Hashtable keyed by thread-
identifier for storing thread-local data).

Method modifications. The most prominent method change regards the change of
the method body; in 99% only the body is changed. There are only a few changes
of the return or argument types or access modifiers. These changes always imply
an adaptation of the method body. Note that our analysis is conservative because
it considers modifications to debugging information in the classfiles as method
body changes. Debugging information is irrelevant for the update because it is
ignored by the virtual machine. Consequently, the reported number of method
body changes are an upper limit.

3.2 Updates

The updating approach cannot handle all kinds of changes. In such a case, the ap-
plication cannot be updated at run-time and, as a consequence, must be restarted
with the new version. For example, the updating model cannot update the super-
class (one release in tomcat-5.5), as the aspect model does not provide a means
to define such modifications. Type changes of fields require the adaptation of ex-
isting objects (four releases including a total of five changes). To enable such
modifications, we can use an indirection mechanism that keeps a hidden ex-
tension field in the first version [5]). Using such a mechanism, the programmer
needs to annotate field changes with according transformation functions. The
updating system then installs aspects that wrap field accesses with the provided
transformation functions [2]. As an alternative, we have described an extension

4

to the aspect system using a copying garbage collector that could iterate over
the object graph thereby transforming the objects [1].

Table 2 shows the aspects necessary to update the application. Column As-
pects shows the number of aspects that contain the number of methods given
in the first column. Column Advised classes shows the number of aspects that
advise the number of classes given in the header, in relation to the total number
of methods contained in the aspect. Column Virtual methods indicates the num-
ber of aspects that redefine the number of virtual methods given in the header,
in relation to the total number of methods contained in the aspect. Overall,
the table shows that most aspects encompass only a small number of classes
and methods. Additionally, the number of virtual methods updated is small and
explicit dispatching is therefore rarely required.

Table 2. Necessary updating aspects.

Methods Aspects Advised classes Virtual methods

1 2 3 0 1 2 12

1 976 976 0 0 976 0 0 0

2 36 13 23 0 19 17 0 0

3 10 8 2 0 2 0 8 0

4 4 1 2 1 3 0 1 0

5 5 1 3 1 2 3 0 0

6 1 0 0 1 1 0 0 0

7 1 0 1 0 1 0 0 0

10 2 1 1 0 1 1 0 0

13 1 0 1 0 1 0 0 0

23 1 1 0 0 0 0 0 1

24 1 0 0 1 0 1 0 0

4 Concluding remarks

We analyzed more than 20 releases of tomcat-5.5 that capture four years of its
evolution. The results of this case study confirm our expectations: tomcat-5.5
exposes fairly localized changes and thus allow the modular decomposition of
an update. There are various evolution steps the updating model can handle,
and software developers may consider dynamic aspect-based updating as an
alternative approach to achieve dynamic software evolution.

Acknowledgments. The work presented in this paper was partially supported by the National
Competence Center in Research on Mobile Information and Communication Systems (NCCR-MICS),
a center supported by the Swiss National Science Foundation under grant number 5005-67322.

5

References

1. S. Cech Previtali and T. R. Gross. Dynamic Updating of Software Systems Based
on Aspects. In 22nd IEEE International Conference on Software Maintenance
(ICSM’06), pages 83–92, 2006.

2. S. Cech Previtali and T. R. Gross. A Case Study for Aspect-based Updating. In
5th ECOOP Workshop on Reflection, AOP and Meta-Data for Software Evolution
(RAM-SE’08), Paphos (Cyprus), July 2008.

3. S. Cech Previtali and T. R. Gross. Extracting Updating Aspects from Version
Differences. In LATE ’08: Proceedings of the 2008 AOSD Workshop on Linking
Aspect Technology and Evolution, pages 1–5, New York, NY, USA, 2008. ACM.

4. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley
Publishing Company, Inc., Reading, Massachusetts, 2nd edition, 1999.

5. I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical Dynamic Software Updating
for C. In ACM SIGPLAN 2006 Conference on Programming Language Design and
Implementation (PLDI’06), pages 72–83, 2006.

6. A. Nicoară, G. Alonso, and T. Roscoe. Controlled, Systematic, and Efficient Code
Replacement for Running Java Programs. In ACM SIGOPS/EuroSys European
Conference on Computer Systems 2008 (EuroSys’08), 2008.

7. A. Popovici, G. Alonso, and T. Gross. Just-in-time Aspects: Efficient Dynamic
Weaving for Java. In 2nd International Conference on Aspect-Oriented Software
Development (AOSD’03), pages 100–109, 2003.

8. A. Popovici, T. R. Gross, and G. Alonso. Dynamic Weaving for Aspect-Oriented
Programming. In 1st International Conference on Aspect-Oriented Software Devel-
opment (AOSD’02), pages 141–147, 2002.

6

Runtime Adaptations within the
QuaD2-Framework

Steffen Mencke, Martin Kunz and Mario Pukall

Otto-von-Guericke University, P.O. Box 4120, 39016 Magdeburg, Germany

Abstract The importance of providing integration architectures in ev-
ery field of application is beyond controversy these days. Unfortunately,
existing solutions are focusing mainly on functionality. But for the suc-
cess of Systems Integration in the long run, the quality of developed ar-
chitectures is of substantial interest. Therefore, a framework for quality-
driven creation of architectures is proposed in [1]. The idea fundamentally
bases on functional and non-functional runtime adaptations.

1 Introduction

Due to manifold advantages of high-flexible infrastructures compared to mono-
lithic products a lot of initiatives propose approaches for the integration of single
components (e.g. services, content). Semantic metadata provides the basis for the
automation of this process. But those approaches lack from a throughout consid-
eration of empirical data. Either only functional requirements or single quality
attributes are taken into consideration.

The presented general QuaD2-Framework (Quality Driven Design) is inten-
tionally described in an abstract way to enable an applicability to different fields,
e.g. e-learning content provision, service oriented architectures and enterprise ap-
plication integration. For this reason a general terminology is used and special
domain-specific instantiations are described elsewhere (e.g. in [2] or [3]).

In contrast to existing approaches the QuaD2-Framework reveals a holistic
orientation on quality aspects. It combines semantic web technologies for the
fast and correct assembly of elements and quality attribute evaluations for the
best possible assembly decisions.

Several points of runtime adaptations reveal the advantages of the frame-
work in order to enable an up-to-date entity assembly and presentation. In fact
that targets the quality-driven selection of appropriate entities as well as the
experience-based selection of process and quality models.

2 QuaD2-Framework

The major goal of the described core process is the assembly of an infrastructure
consisting of single entities. Such an entity is metadata-annotated functionality
and may be depicted by e.g. services, agents or content fragments in concrete
applications.

7

Until Process
Completed

Repeat

Process Model
Element Query

End

Initialisa-
tion

Operation

Entity

Selection

Feasibility
check

Quality
Assurance

Entity
Repository

Process
Evaluation

Entity Repository
Query

Complete
Coverage?

End

No

Yes

Process Step
Determination

No

Yes

Measurement
Data

Current Process
State &

Evaluation Data

Entity
Execution

Result

Process Model Element /
Entity /Evaluation Data

Matrix

Acceptable?

Entity Selection

Process Step
Evaluation

Entity ExecutionMeasurement

Process ModelProcess
Selection &
Adaptation

Experience
Factory

Weighted Quality
Attributes Matrix

Quality Model
Repository

Calculate Abort
Probability

Process Model
Repository

Quality
Model

Selection &
Update

Figure 1. QuaD2-Framework [1].

The QuaD2-Framework is shown in Figure 1.

8

In general the subprocesses of this empirical-based assembly process are the
initialization, the feasibility check (checking the functional coverage), the selec-
tion process based on empiricism as well as the operation of the established
application. The basis of the approach is a collection of semantically-annotated
sources: the process model repository, the entity repository, a quality model
repository and furthermore an experience factory.

The process model repository is the source for process models that serve as
descriptions for the functionality of the aspired distributed system. Example for
such processes can be e.g. didactical approaches descriptions [4].

An important source for empirical quality evaluations are quality models
being provided by a quality model repository. The specification of a certain
quality model is realized by selecting and weighting appropriate attributes.

The entity repository contains entities, their semantic description and their
evaluation data regarding all defined quality attributes.

The selection and adoption of process models and quality models are difficult
tasks which constitutes the need for guidance and support. Based on the work
of Basili and Rombach the usage of an Experience Factory is proposed, that
contains among others an Experience Base and Lessons Learned [5].

3 Runtime Adaptation

Runtime adaptation is performed at several points within the framework. In fact,
that targets the experience-supported selection of an adequate process model,
the experience-supported selection of an appropriate quality model as well as
the functional entity selection.

3.1 Process Model Selection

The selection of an appropriate process model that defines the functional re-
quirements for the parts of the later distributed system is the first step. Due
to the fact, that such a choice can be a manual process, it should be supported
by an experience factory providing knowledge and experiences - lesson learned
- for the decision for or against a specific process model for the current need.
The process model essentially base on semantic metadata to allow the later
automatic mapping of semantically described entity functionalities to the func-
tional requirements specified by the process model. According to [6] only formal
descriptions of those models are applicable.

With the chosen process model a set of concrete distributed systems within
the specified functional range is possible.

3.2 Quality Model Selection

The second step of the presented approach is a selection of a quality model from
a quality model repository. This is intended to be done automatically. For certain
domains manual adaptations can be more efficient. A manual individualization of
this predefined set of quality attributes as well as of their importance weighting
is also possible. For these purposes an experience factory can be helpful again.

9

As a result of this step a process model and importance-ranked quality attributes
are defined. Thereby the quality-related aspects of the framework are adapted
to the specific needs of the particular user.

3.3 Quality-Driven Entity Selection

With these process model and quality model information, process step three
is able to determine whether enough available entities exist to provide an ac-
ceptable amount of functionality demanded by the process model. If there is no
acceptable coverage after the negotiation subprocesses, then an abort probabil-
ity based on already collected data can be computed. The user needs to decide
whether he accepts the probability or not. If not the distributed system provision
process will be aborted.

In the case of an acceptable coverage the runtime subprocesses can start.
The first determines the next process step to be executed following the process
model. Therefore information about the last process steps can be taken into
consideration to optimize the next process step execution. Now, up-to-date entity
information, their evaluation values as well as the data of the quality model are
available to identify the best entity possible.

Following the defined necessities and given data the entity selection is for-
mally described below. For the following formulas let PM be the chosen process
model. Function ffunct(PM) specified in Formula 1 is used to determine the set
of entities E from the entity repository. Each of them can deliver the function-
alities specified within the chosen process model (cp. Formula 2).

ffunct : Process model 7→ {Entity, . . . }. (1)

E = ffunct(PM). (2)

Using the classic normalization approach presented in Formula 3 (normalizing
to the interval from 0 to 1), the evaluation values vi,j of quality requirements j
defined in the quality model must be normalised for each entity i. These vi,j are
the measurement/simulation values to anticipate the optimal decision for the
next process step.

vnorm
i,j =

vi,j −min(v)
max(v)−min(v)

. (3)

With the help of the weighted requirements matrix from the (maybe ad-
justed) quality model the last step - the identification of the optimal entity
according to the empirical data and the quality model QM - can be performed
(see Formulas 4 to 8). Formula 4 adjusts the normalized evaluation values to
ensure proper calculation. If v = 1 describes the best quality level then no ad-
justments are necessary, otherwise a minimum extremum is desired and 1 − v
must be calculated.

fmm(v) =

{
v if a maximal v is the best,
1− v if a minimal v is the best.

(4)

10

feval(ei) = {
n−1∑
j=0

fmm(vi,j
norm)|ei ∈ E ∧ n = |QM |}. (5)

V = {feval(ei)|∀ei ∈ E}. (6)

eworst = eindex, index = min({x|vx = min(V)})
∧ eindex ∈ E.

(7)

E′ = E\eworst. (8)

To determine the best evaluated entity, Formulas 5 to 8 are repeated until
E′ contains only 1 element. It provides the needed functionality and is the most
appropriate one according to the specified quality model.

3.4 Process Model Types for Adaptation

The process models may vary in their basic structure according to the spe-
cial, application-dependent requirements. According to this, their processing and
thereby the automated adaption can be classified [7] Amongst others, the fol-
lowing types can be identified.

Sequential: Sequential process
models are used for the modeling of
sequential assembly and execution
processes. Conditions are used to
define functional decisions and to
thereby create the adapted target
system: maybe an adapted infras-
tructure, an e-Learning course or a
measurement infrastructure.

Figure 2. Sequential Process Models

11

Sequential with separated
supervision: Sequential process
models with separated supervision
are used for the modeling of se-
quential assembly and execution
processes, too. They additionally
include downstream supervision
process steps.

Figure 3. Sequential Process Models with
Separated Supervision

Sequential with integrated
supervision: Sequential process
models with integrated supervision
are similar to the one described
above. In contrast, the supervision
points back to the creation process
steps.

Figure 4. Sequential Process Models with
Integrated Supervision

Supervision: Supervision process
models only target the supervision
of an existing system. Several con-
ditions point away from a central
event handling process step.

Figure 5. Supervision Process Models

Externally influenced: All types
of process models being described
above can be externally influenced
by events outside the currently
defined model. Thereby, meta-
dependencies can be modeled.

Figure 6. Externally Influenced Process
Models

12

4 Conclusion and Further Work

The QuaD2-Framework can be implemented using various technologies as e.g.
ontologies, web services and agents. The presented quality-driven approach uses
semantic descriptions for processes automation and supports different quality
models and quality attribute evaluations.

Automatic quality measurement, evaluation and quality-driven entity selec-
tion within the general QuaD2-Process are major building blocks for an high
quality automatic runtime adaptation.

An implementation of this approach for specific systems is currently being
performed. For the areas of e-Learning systems [2] and software measurement
infrastructures [3] first components are realized.

References

1. Kunz, M., Mencke, S., Rud, D., Dumke, R.: Empirical-Based Design – Quality-
Driven Assembly of Components. In: Proceedings of the IEEE International Con-
ference on Information Reuse and Integration (IRI 2008), Las Vegas, Nevada, USA
(2008)

2. Mencke, S., Dumke, R.R.: A Hierarchy of Ontologies for Didactics-Enhanced E-
learning. In Auer, M.E., ed.: Proceedings of the International Conference on Inter-
active Computer aided Learning (ICL2007), Villach, Austria (2007)

3. Kunz, M., Schmietendorf, A., Dumke, R., Wille, C.: Towards a Service-Oriented
Measurement Infrastructure. In: Proceedings of the 3rd Software Measurement
European Forum (SMEF 2006), Rome, Italy (2006) 197–207

4. Mencke, S., Dumke, R.: Didactical Ontologies. Emerging Technologies in e-Learning
(iJET) 3(1) (2008) 65–73

5. Basili, V.R., Caldiera, G., Rombach, H.D.: The Experience Factory. In Marciniak,
J.J., ed.: Encyclopedia of SE. Volume 1. John Wiley & Sons (1994) 511–519

6. Mencke, S., Zbrog, F., Dumke, R.: Useful e-Learning Process Descriptions. In:
Proceedings of the 4th International Conference on Web Information Systems and
Technologies (WEBIST 2008). Volume 1., Funchal, Madeira, Portugal, INSTICC
Press (2008) 460–463

7. Mencke, S.: Proactive Ontology-Based Content Provision in the Context of e-
Learning. PhD thesis, Otto-von-Guericke University of Magdeburg (2008)

13

14

Modeling context-dependent aspect interference

using default logics

Frans Sanen, Eddy Truyen, and Wouter Joosen

Distrinet Research Group, Department of Computer Science, K. U. Leuven,

Celestijnenlaan 200A, B-3001 Heverlee, Belgium

{frans.sanen, eddy.truyen, wouter.joosen}@cs.kuleuven.be

Abstract. Explicitly representing aspect interactions is vital so that they can be

shared and used in the course of system evolution. As a consequence, guidance

can be given to the software developer and automated support for handling

interactions becomes possible. In this paper, we propose to use default logics

for modeling context-dependent aspect interference. We motivate and illustrate

our work by an example interference from the domotica world.

Keywords: Aspect interactions, knowledge, interference, default logics.

1 Introduction

Aspect interference is a well-known challenging problem with current aspect-

oriented programming technology. As it has already been motivated in [10], explicitly

representing aspect interactions results in an important form of knowledge that can be

shared and used in the course of system evolution. If specified formally enough,

software systems can exploit this knowledge to autonomously reconfigure themselves

to detect and resolve undesired aspect interferences, by using existing safe dynamic

reconfiguration support similar to the one in [13].

In this paper, we want to make the case for modeling support for context-

dependent interferences. We define aspect interference as a conflicting situation

where one aspect that works correctly in isolation does not work correctly anymore

when it is composed with other aspects. A context-dependent interference is an

interaction that might or might not occur if certain aspects are composed depending

on the runtime context at hand. Or more formally: “Given an aspect A that is woven

into a system S, there exists a set of contextual conditions CA associated with aspect A

such that, when at least one element of CA evaluates to true, the execution of the

aspect A will cause an error in the execution of system S. A contextual condition is

defined as a boolean expression that evaluates over properties of the context in which

the aspect is deployed – contextual properties.” Obviously, the context of aspect A

does not only consist of the system S but also involves all the other aspects that are

simultaneously woven into S. As a consequence, context information entails key

information pieces that we need to express.

We consider this particular problem of context-dependent aspect interferences in

the case of aspect-oriented middleware [14, 7, 13] which uses AOP for implementing

middleware services. Subtle aspect interferences exist in a middleware environment.

Consider the example of a power saving aspect and an integrity aspect using

symmetric encryption [11]. A symmetric encryption key has a limited lifetime and

therefore should be regenerated upon expiration, which is very computationally

15

intensive. Only when the power of the device being used is low and the key is about

to expire, interference arises between both the power saving and integrity aspect.

A prerequisite for the scenario of systems capable of autonomously reconfiguring

themselves to resolve context-dependent interferences is that interaction knowledge

has to be specified in an unambiguous way. We have found no satisfactory solutions

in current work on interaction modeling. We will elaborate on this later in the paper.

The rest of this paper is structured as follows. Section 2 elaborates on the need for

modeling context-dependent interactions. It also shortly indicates that current

approaches lack sufficient support in this regard. We propose to use default logics for

modeling context-dependent interactions in Section 3 before concluding in Section 4.

2 Modeling aspect interactions

To be able to share and use aspect interactions in the course of system evolution,

we need a means for modeling them. Some work already exists where interactions are

modeled separately, but to the best of our knowledge, these suffer from several

shortcomings, especially in the context of context-dependent interactions. In the NFR

framework [2], Chung et al. introduce the concept of correlating (i.e. interacting) non-

functional requirements. It for instance can be expressed that using a compressed

format to store information deteriorates (hurts) its response time. However, such a

representation cannot take into account the concrete context in which the interaction

arises, e.g. when the CPU load is above a certain threshold. Similarly, interaction

modeling in feature models [4, 6] allows you to express that feature A requires or

excludes feature B, but this is not flexible enough to provide any means to model the

context on which an interaction depends. Classen et al. [3] consider feature

interactions as the simultaneous presence of several features causing malfunctions,

hence ignoring the potential context dependence of an interaction. Finally, Pawlak et

al. [8] propose a language to abstractly define an execution domain, advice codes and

their often implicit execution constraints. Especially the latter are relevant because

exactly these represent the context in which undesired effects occur, e.g. a network

overload situation. These conditions are key information pieces we need to express.

The pedagogical example interaction we will use throughout the rest of this paper

is situated in a home integration system product line context and borrowed from [5].

Home integration systems are a new and emerging set of systems combining features

in the area of home control, home security, communications, personal information,

health, etc. Each feature easily can be mapped to one or more aspects implementing it.

Imagine a domotica product that helps to protect the housing environment. On the one

hand, your personal product entails a flood control feature which shuts off the water

main to the home during a flood. On the other hand, it also contains a fire control

feature that turns on some sprinklers during a fire. Turning the sprinklers on during a

fire and flooding the basement before the fire is under control results in a really

undesirable interaction since the flood control feature will shut off the home's water

main, rendering the sprinklers useless. As a result, your house further will burn down.

In order to have a correct representation for our example interaction, three

scenarios have to be considered: (1) the basement is flooded, (2) a fire in the house is

detected and (3) the basement is flooded as a result of the sprinklers trying to

extinguish the fire.

16

Traditional methods and technologies often offer support to prioritize features in

relationship with one another. However, we are convinced that such a prioritization

not always is feasible to overcome context-dependent interactions. One of the main

reasons is because priorities are far less flexible. First of all, an interaction between

two features having the same priority cannot be resolved. Secondly, the priority of

two features related to one another can be different in varying circumstances. For

instance, suppose there are two additional features included in your domotica product:

a presence simulation feature that turns lights on and off to simulate the presence of

the house occupants and a doorkeeper feature which controls the access to the house

and allows occupants to talk to the visitor [12]. Obviously, we would like the

doorkeeper not to give away the fact that nobody is at home if there is an unidentified

person in front of the door to prevent the owners from a burglary.

3 Using default logics

Default logics haven been originally proposed by Reiter [9] as a non-monotonic

logic to formalize reasoning with default assumptions. It allows us to make plausible

conjectures when faced with incomplete information and draw conclusions based

upon assumptions. [1] As an intuitive example of what can be expressed, consider the

well-known principle of justice in our Western culture: “In the absence of evidence to

the contrary, assume that the accused is innocent.” In this section, we shortly will

overview both the syntactic sugar and semantics (informally) of default logics by

applying it to our example interaction from above. Next, we discuss the relevance of

using default logics in our example.

3.1 Syntax and semantics

A default theory T is a pair (W, D) consisting of a set W of predicate logic formulas

(background theory or facts of T) and a set D of defaults. The default explicitly

representing our example interaction is presented below (1) and should be thought of

being used together with the classical rule that is also shown (2).

���������	�
���: �������������������

��������������������

(1)

������������ � ������������������� (2)

According to default (1), if we know that ���������	�
��� is true and

������������������� can be assumed, we can conclude ��������������������.

Because of rule (2), ������������������� will be concluded upon fire detection.

The three parts of a default rule are called the prerequisite ϕ, justifications ψi and

conclusion χ respectively. Hence, the general explanation of any default rule is given

by “if we believe that prerequisite is true, and the justification is consistent with our

current beliefs, we also believe the conclusion”. In other words, given a default ϕ: ψ1,

ψ2, … / χ, its informal meaning is: if ϕ is known, and if it is consistent to assume ψ1,

17

ψ2, … then conclude χ. It is consistent to assume ψi iff the negation of ψi is not part

of the background theory W.

At this point, it is important to realize that classical logic is not appropriate to

model this situation. Imagine the following rule as an alternative for (1).

���������	�
��� � ������������������� � �������������������� (3)

The problem with this rule is that we have to definitely establish (basically because

of the closed world assumption) that the fire control feature is not active before

applying this rule. As a consequence, the flood control service never would be able to

become active.

The semantics of default logic typically is defined in terms of extensions. Intuitively,

an extension seeks to extend the set of known facts (i.e. background theory) with

“reasonable” conjectures based on the applicable defaults. More formally, a default ϕ:

ψ1, ψ2, … / χ, is applicable to a deductively closed set of formulas E iff ϕ ∈ E and

¬ψ1 ∉ E, ¬ψ2 ∉ E, ... You can think of E as the context in which ϕ should be known

and with which ψi should be consistent.

3.2 Discussion

We will now revisit our default (1) together with its semantics. Intuitively, this rule

states that the flood control service will be activated upon detection of water in the

basement, unless the fire control feature is active. It is easy to see that with this

representation all possible scenarios are represented correctly. In each of these

scenarios, the set D of defaults contains default (1). The only two facts that are

relevant when searching extensions are ���������	�
��� and ������������.

If, on the one hand, a sensor detects water in the basement, then the background

theory W will include ���������	�
���. Because of default (1), the only valid

extension is the one where flood control service will become active (we conclude

�������������������� because ���������	�
��� (the prerequisite) is true and the

justification ������������������� is not inconsistent with what is currently known.

On the other hand, if a fire is detected by the system, W will include ������������

and classical rule (2) fires so that ������������������� also becomes true in the

extension. If later (the third scenario), as a consequence, the basement will be flooded,

default (1) can no longer be applied. Note that this is exactly what we wanted.

In our approach, the context in which an interaction occurs is made explicit via one

or more justifications in a default rule. By taking certain conditions into account, the

solution of the interaction lies in the fact that the justifications need to be invalidated

in order to have a correct functioning system. Because of this, an interaction is

prevented from occurring while normal execution behavior also easily can be

captured and isn't influenced.

4 Conclusion

To conclude, we started from the observation that modeling aspect interactions results

in an important form of knowledge that can be shared and used in the course of

18

system evolution. We propose to use default logics for representing aspect

interactions. The main advantage of this approach is that the interaction becomes

explicit in the justification part of a default rule. Therefore, undesired interactions can

be prevented from happening by invalidating one of the justifications of the default

rule representing the interaction.

Acknowledgments. This work is partially funded by the Interuniversity Attraction

Poles Programme Belgian State, Belgian Science Policy, Research Fund K. U. Leuven

and European Commission grant IST-2-004349: European Network of Excellence on

Aspect-Oriented Software Development (AOSD-Europe), 2004-2008.

References

1. Antoniou, G.: A tutorial on default logics. ACM Computing Surveys 31 (4), pp. 337-359,

1999.

2. Chung, L., Nixon, B. A., Yu, E., Mylopoulos, J.: Non-functional requirements in software

engineering. Kluwer academic publishing, Norwell, 2000.

3. Classen, A., Heymans, P., Schobbens, P.: What's in a Feature: A Requirements

Engineering Perspective. Proceedings of the 11th International Conference on

Fundamental Approaches to Software Engineering (FASE'08), pp. 16-30, 2008.

4. Czarnecki, K., Eisenecker, U. W.: Generative Programming. Addison Wesley, London,

2000.

5. Kang, K.C., Lee, J., Donohoe, P.: Feature-oriented product line engineering. IEEE

Software, vol. 19, no. 4, pp. 58-65, 2002.

6. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain analysis

(FODA) feasibility study. Technical report CMU/SEI-90-TR-021.

7. Lagaisse, B., Joosen, W.: True and transparent distributed composition of aspect

components. 7th International Middleware Conference, pp. 41-62, 2006.

8. Pawlak, R., Duchien, L., Seinturier, L.: CompAr: Ensuring safe around advice

composition. 7th Internation Conference on Formal Methods for Open Object-Based

Distributed Systems, 2008.

9. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13 (1-2), pp. 81-132,

1980.

10. Sanen, F., Truyen, E., Joosen, W.: Managing concern interactions in middleware. 7th

International Conference on Distributed Applications and Interoperable Systems, 2007.

11. Sanen, F., Truyen, E., Joosen, W., Jackson, A., Nedos, A., Clarke, S., Loughran, N.,

Rashid, A.: Classifying and documenting aspect interactions. Proceedings of the 5th

AOSD Workshop on Aspect, Components, and Patterns for Infrastructure Software, pp.

23-26, 2006.

12. Schwanninger, C. et al.: Confidential list of requirements on a Totally Integrated Home

platform. Siemens internal document, 2006.

13. Truyen, E., Janssens, N., Sanen, F., Joosen, W.: Support for Distributed Adaptations in

Aspect-Oriented Middleware, 7th International Conference on Aspect-Oriented Software

Development, 2008.

14. Truyen, E., Vanhaute, B., Joosen, W., Verbaeten, P., Jorgensen, B.: Dynamic and

Selective Combination of Extensions in Component-based Applications. 23rd

International Conference on Software Engineering, pp. 233-242, 2001.

19

20

Exploring Role-Based Adaptation

Sebastian Götz and Ilie Şavga

Department of Computer Science, Dresden University of Technology, Germany,
{sebastian.goetz|is13}@mail.inf.tu-dresden.de

Abstract. The adapter design pattern [1], commonly used for integration and
evolution in component-based systems, is originally described by roles. In class-
based systems, the conventional realization of the pattern spuriously maps these
roles to classes. The recent appearance of mature languages supporting roles as
first order programming constructs poses the question whether realizing this pat-
tern directly in roles offers benefits comparing to class-based realization. This
paper explores the feasibility of role-based adaptation and discusses its benefits
and challenges.

1 Introduction

When assembling independently developed components, it is often the case that their
public interfaces do not fit to each other. If components cannot be adjusted directly
(e.g., when assembling third-party components), an adapter needs to be placed between
them to bridge interface incompatibilities. Gamma et al. [1, p. 139] describes the adapter
design pattern by 4 collaborating roles (Client, Target, Adapter and Adaptee) and shows
a possible pattern implementation as a mapping of these roles to classes.

For our running example, assume a university management system (UMS), in which
the concept of student is modeled by interface Student and implemented by class
StudentImpl. Among other interface methods, the class implements the getGrades
method that retrieves subjects and grades of the student from a file used for serializa-
tion. This method is used also in the implementation of printGrades that prints out
subjects and grades of a student.

Later, due to new system requirements, it is decided to buy a sophisticated reporting
component that replaces the simple functionality previously realized directly by Stu-
dentImpl. Moreover, UMS is integrated with a persistence component that is now
responsible for saving and retrieving data. To retrieve student grades, StudentImpl
must now call the persistence component to get data. To print this information, Stu-
dentImpl must wrap it before sending to the reporting component, because the signa-
ture of printing method in Student (expected by existing clients) differs from the one
of the reporting component (Report.printReport expecting report component’s
specific DataRow as its parameter). So, StudentImpl must translate between the
two interfaces and becomes effectively a class-based adapter (Figure 1).

Figure 2 shows internals of the printGrades method of StudentImpl that
performs the actual translation. Using student identity (for simplicity, ”this”), the method
constructs the corresponding SQL query, retrieves data from the persistence component
using the getGrades method and fills them into the type required by the reporting

21

Fig. 1. Class-based adapter. Classes are annotated with roles these classes implement.

component. In addition, now the getGrades method (code not shown) itself is an
adaptation method calling retrieve of the newly introduced persistence component
and converting its ResultSet to the Map of the Student interface being adapted.

The main drawback of this class-based adapter realization is that the code respon-
sible for different tasks is highly intertwined. For instance, in lines 11 and 12 the code
realizing logic for the data retrieval and for reporting concerns is joined. When real-
izing this adapter, developers need to consider in fact the static types and semantics
of all three domains involved (i.e., of the report and persistence components and of
the UMS itself). In real life scenarios with possibly many interrelated components be-

1 Re po r t r e p o r t ;
2 DBComponent db ;
3 p u b l i c vo id p r i n t G r a d e s () {
4 / / c o n s t r u c t an SQL query f o r t h i s s t u d e n t
5 S t r i n g que ry = createSQLQueryByTime (t h i s) ;
6 / / r e t r e i v e s t u d e n t s u b j e c t−mark p a i r s
7 R e s u l t S e t s r s = t h i s . g e t G r a d e s (que ry) ;
8 / / f i l l i n and send t h e r e p o r t da ta
9 DataRow r e p o r t D a t a = new DataRow () ;

10 whi le (s r s . n e x t ()) {
11 r e p o r t D a t a . add (s r s . g e t S t r i n g (’ ’ S u b j e c t ’ ’)) ;
12 r e p o r t D a t a . add (s r s . g e t S t r i n g (’ ’ Mark ’ ’)) ;
13 }
14 r e p o r t . p r i n t R e p o r t (r e p o r t D a t a) ;
15 }

Fig. 2. Implementation of StudentImpl.printGrades

22

ing integrated, such inability to separately realize each concern increases the time and
error-proness of adaptation. Even more important, an adapter is itself a software artifact
inevitably requiring maintenance. In case the adapter needs to be modified (for example,
to improve its performance), developers need to understand its often extremely complex
implementation.

The situation aggravates furthermore when the public interfaces of components, on
which the adapter depends, evolve as well. In our running example, an upgraded ver-
sion of the report component may change the signature of Report.printReport.
For example, in an older component version, its void method was throwing an excep-
tion in case of a printing failure and in the new version the method returns a new type
DocumentPrinting containing details of method’s execution. To accommodate the
adapter to these changes, its whole code needs to be thoroughly investigated and un-
derstood. Often this needs to be done by developers others then the adapter’s initial
developers. Because the adaptation decisions are made dependent on each other in the
code, a bug made when adjusting one component may propagate to other adapter’s
parts. For instance, if getGrades of the persistence component evolves and a bug is
made when adjusting to its changes, this bug will also be reflected in the behavior of
the adapter’s printGrades.

All in all, these maintenance problems stem from the fact that the adaptation concern
mentally modeled by four roles of [1] is lost in transition to the class-based adapter im-
plementation. Presumably, preserving these roles explicit in the implementation brings
benefits comparing to class-based adaptation. Using a language supporting roles as first-
class citizens, we investigate the feasibility, benefits and drawbacks of role-based adap-
tation.

2 Role-based Adaptation

To implement the role-based adapter of our running example, we use a relatively new
yet rich language ObjectTeams/Java—a stable well-tested Java extension supporting
roles and collaborations [2]. However, since the language consists of several specific
terms that need lengthy explanation, in this paper we refrain from its specific termi-
nology. Instead, taking into consideration the run-time responsibilities, we dissect the
concept of the Adapter role into Mediator, In- and Out-(sub)roles. Similarly to conven-
tional aspects, an In-role is responsible for handling the incoming data into the adapter
and an Out-role is in charge of passing data flow further to the adaptee. The Mediator
represents the description of the collaboration—it mediates between In- and Out-Roles.
This separates adaptation code responsible for communication with the target (In-Role)
and adaptees (Out-Roles) from integration logic (Mediator), i.e. the description of how
target and adaptees collaborate.

Figure 3 depicts how role-based adaptation can be realized for our running example.
Each role is played by (instances of) and mapped to a single class. The key difference
to the class-based adapter is that the target and adaptee roles are realized directly as
roles. The adapter role is represented by the mediator, which is realized as a class. This
is because the mediator describes the collaboration, but is not part of it and thus is
not a role. As a consequence, integration logic is decoupled from target and adaptees.

23

Fig. 3. Role-based adapter. Roles annotate classes playing those roles.

Additionally there is another separate role for each target class. Note, that In- and Out-
roles for each adaptation role in concern are realized separately and are encapsulated
in the corresponding role realizations, preserving thus adaptation decisions. Regardless
of how they are actually mapped to classes and boil down to the execution code, these
explicit roles can be maintained separately and do not intertwine. Moreover, adding new
adapter’s responsibilities (e.g., to adapt yet another commercial component) becomes
easier due to the separation of adaptation concerns. If the structure or behavior of target
or adaptees change, only the appropriate In- or Out-Roles need to be adjusted. Thus
role-based adapters lead to less effort for maintenance. In a class-based realization,
such separation is only possible using the complex role object pattern [3], which is in
fact a workaround of language limitations to realize roles directly.

3 Challenges and Limitations

An important conceptual issue to be mentioned is that applying role-based adaptation
to adapt class-based components reduces potential power of a pure object-based design
(as envisioned by Reenskaug [4]). In our case it is not possible to realize the pattern
only in roles, because at least some of them need to be bound to actual components’
classes. In particular, in a strongly-typed class-based system, at least the target class
needs to be specified statically.

A limitation inherent to ObjectTeams/Java is that a role can only have a single base
class. As a consequence, the adapter’s roles cannot be realized by instances of different,
unrelated classes at run-time. This decreases reuse, because the adapter’s roles, once
defined, can only be used for a single class. If another class needs the same functionality,
another role needs to be defined again, possibly duplicating the same implementation.

The major practical challenge we stipulate regarding role-based adaptation is that
the learning curve implied by the application of a new technique may not be accepted

24

by developers. Since developers are in general reluctant to learn new programming
languages and, even more important, have to admit a certain degree of obsoleteness of
their conventional class-based adapter realization, it is not clear, whether such technique
can be easily accepted by them.

4 Future Work

The applicability and feasibility of role-based adaptation needs to be supported by em-
pirical data collected in an experiment. For the experiment two teams of five students
each are needed, where the first team uses conventional class-based adapters and the
second team role-based adapters. The experiment consists of two phases. In advance to
the experiment both teams develop the initial version (without adapters) of the univer-
sity management system (UMS) as introduced in Section 1, i.e. data is retrieved from
a comma separated file and grades are printed to the console. In the first phase both
teams realize data retrieval using a persistence component and printing using a report-
ing component. In the second and last phase both teams need to adjust their adapters
according to a set of changes of the integrated components. Throughout the experiment
time measurement and software metrics are used to collect empirical data. Addition-
ally surveys shall be answered by each student initially (expectations) and after each
phase. The collected data enables an empirical comparison of how much initial effort is
needed to introduce role-based adapters (first phase) and how much less effort is needed
for maintenance in case role-based adapters have been used (second phase).

The collaboration of In- and Out-Roles to integrate a set of components is often of
the same form. Components are often connected in a sequential order, i.e. the returned
values of the first component are passed as arguments to the second component and so
forth. Figure 4(a) depicts such collaboration in a sequence diagram like notion. Remind
the running example, where the persistence components return value is passed as an ar-
gument to the reporting component. The mediator in such scenarios is always the same,
except for the In- and Out-Roles it uses. Another often recurring scenario is the usage
of the first components return value to decide which of the other integrated components
is to be used. The mediator picks one of the Out-Roles, based on the first components
return value. Figure 4(b) depicts such collaboration. The first components (C1) return
value (3) is used by the role-based adapter to decide that the third component is to be

(a) Sequential role-based adapter. (b) Pick role-based adapter.

Fig. 4. Special kinds of role-based adapters.

25

used. It may thus be beneficial to describe abstract, generic mediators, which are pa-
rameterizable by In- and Out-Roles. Further special kinds of mediators and mechanisms
to describe parameterizable role-based adapters are to be identified.

5 Conclusion

Using conventional class-based realization of adapters leads often to highly complex
adaptation code that is hard to understand, maintain and evolve. The role-based realiza-
tion of adapters leads to more initial coding effort and requires the developers to learn
a new programming language. But long term benefits are worth these initial efforts.

A role-based realization of adapters in a language supporting roles as first-order pro-
gramming constructs avoids the spuriously mapping of roles to classes and may consid-
erably reduce code complexity due to the separation of adaptation concerns in the result-
ing implementation. Even more important, such realization preserves initial adaptation
decisions made and contributes furthermore to the maintainability of adapters. More-
over developers are able to focus on one adaptation concern at a time, which leads to
easier development of adapters. Highly skilled developers will not sense simplification,
because they are used to write complex adapters. But for example new members of a
developer team are able to understand existing adapters in much shorter time.

We will further investigate the frontiers of role-base adaptation, its practical real-
ization, advantages and limitations in the Bachelor thesis of one of the paper’s authors
[5].

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, Massachusetts (1995)

2. Herrmann, S., Hundt, C., Mosconi, M.: ObjectTeams/Java Language Definition - version 1.0.
Technical Report 2007/03, Technical University Berlin (2007)

3. Bäumer, D., Riehle, D., Siberski, W., Wulf, M.: The role object pattern. In: PLoP’97: Pro-
ceedings of the 4th Pattern Language of Programming Conference. (1997)

4. Reenskaug, T.: Working with Objects: The OOram Software Engineering Method. Manning
Publications (1996)

5. Götz, S.: Role-based adaptation (2008) http://www1.inf.tu-dresden.de/
s̃9288421/papers/goetz-gb-thesis.pdf.

26

Annotations for Seamless
Aspect-Based Software Evolution

Susanne Cech Previtali and Thomas R. Gross

Department of Computer Science, ETH Zurich, Switzerland

Abstract. We are developing a dynamic software evolution system that
leverages aspect technology to encapsulate software updates. Ideally,
an evolution system provides as much automation as possible. Certain
changes, however, defeat automation. For instance, field additions cannot
be concisely captured without the feedback of the programmer. Rather
than reconstructing the missing information in retrospect, we propose to
gather the necessary meta-data along with the development process. We
use Java annotations for that purpose: for instance, programmers may
annotate added fields with their corresponding initialization. In some
cases, the software development environment may even infer annotations
from the actions taken by the programmer, and therefore, annotations
enable a seamless software evolution cycle.

1 Introduction

Our approach to the dynamic evolution of object-oriented software systems [3,
4] treats updates in a manner similar to crosscutting concerns in aspect-oriented
programming: all changes that belong to a logical update are encapsulated in one
aspect. We are developing a software evolution system that implements this idea.
To compute the required updates, the system compares statically two versions of
a Java program in bytecode form and deduces their structural differences. The
structural differences constitute the individual changes. The system identifies the
dependences between the changes and encapsulates these changes as aspects. For
deploying the aspects, the system relies on a dynamic aspect sub-system [7–10].

The software evolution system automates the version comparison, the deduc-
tion of update dependences, and the generation of aspects. The calculation of
dependences and aspects depends on the extracted differences. Unfortunately,
not all differences can be easily detected by a tool; e.g., name changes require
special heuristics [5] or human interaction [2]. Furthermore, adding or chang-
ing the type of fields requires the programmer to provide code for transforming
existing objects.

In this paper, we discuss how the programmer may convey meta-data in
the form of Java annotations during software development and maintenance to
automate the program comparison for update generation. The remainder of the
paper is organized as follows: Sect. 2 discusses related work. Sect. 3 introduces
annotations for our software evolution system. Sect. 4 concludes the paper.

27

2 Related work

The dynamic software updating (DSU) [5] system detects name changes of func-
tions by partially matching the abstract syntax tree of successive versions of C
programs. JDiff [1, 2] is a tool to compare object-oriented programs. The tool an-
alyzes the bytecode from class files and compares programs at a statement-level
granularity. To detect name changes, the authors propose human interaction dur-
ing the process of comparison. Currently, our implementation does not detect
name changes and consequently handles a rename as an addition and delete.

The DSU system [6, 12] generates type transformer functions, which must be
completed by the developer to provide explicit conversions. Type evolution is
handled by wrapping the original type and adding a version number and fixed-
size extra space to prepare for eventual growth of the type over time. For each
field access, the compiler inserts code to return the underlying representation.
As type evolution is limited by the fixed amount of extra space reserved in the
initial version, the authors mention the use of indirection in type definitions at
the cost of an extra dereference per access. We suggest also to use indirection to
accommodate object evolution, but, rather than providing type transformations
when the release is ready, programmers encode the transformations along with
the development, once they are aware of the details.

Robbes et al. [11] propose to record semantic changes from the refactoring
information provided by an software development environment such as Eclipse
to understand software evolution. Instead, we use refactoring information to
generate Java annotations to achieve dynamic software evolution.

3 Annotations

In the following, we present how Java annotations may be used to tag changes
and how the software evolution system can exploit this information.

3.1 Name changes

We propose a simple meta-data based approach to handle name changes. The
approach relies on annotations that are generated by the software development
environment whenever the programmer uses the renaming refactoring facility.
The annotation must indicate the previous name of the renamed entity. Figure 1
shows two versions of a class. The new version (on the right) renames the method
start() to run(); the annotation above the method declaration denotes the old
name.

Currently, our implementation handles a rename as an addition and delete.
With the information from the annotations, we can link these pairs and leave it
up to the system to take proper action. The system may replace the new names
with the original ones in the compiled class files or may update the symbol table.

28

/* Version 1 */
class S {

 void start() { ... }
}

/* Version 2 */
class S {
 @Rename (previous=”start”)
 void run() { ... }
}

Fig. 1. Annotations for renaming.

3.2 Field changes

Annotations may also facilitate field modifications that require object evolution,
i.e., the adaptation of existing objects at run-time. Such changes modify the old
object layout, by e.g., adding another field or by changing the type of an existing
field.

Field additions. Adding a new field to a type requires all existing objects to be
modified to support reading and writing this new field. Following Neamtiu et
al. [6], we propose an indirection system in which a special field, ext, is added to
all classes to support future growth. When a class must be updated with a new
field, a special “delta class” is generated containing any added fields. Existing
objects have their ext field set to an instance of this delta class, and field access
in the original code is rewritten to accomodate the extra layer of indirection.
Although the constructor in a new version initializes new objects appropriately
(i.e., including the added field), special care must be taken to “initialize” the
added field in existing objects. Using annotations, a programmer can indicate a
method to initialize the added field.

Figure 2 provides an example. The new class declaration in the middle shows
the added field field3 annotated with the name of the initialization method.
This initialization method must be declared in the new class itself. The class
declaration on the left contains a field ext of type Object to accommodate future
field additions. The class declaration on the right lists the delta class; its special
constructor links the existing object to this extension.

/* Version 1 */
class S {
 A field1;
 B field2;
 Object ext;
}

/* Version 2 */
class S {
 A field1;
 B field2;
 @Initialize(name=”init”)
 C field3;

 void init() {
 field3 = field1.addTo(field2);
 }
}

/* Update from version 1 to version 2 */
class DeltaS {
 C field3;
 Object ext;

 /* Special constructor */
 DeltaS(S old) {
 field3 = old.field1.addTo(old.field2);
 old.ext = this;
 }
}

Fig. 2. Annotations for field additions.

29

Type transformations. Another update concerns the modification of the type
of an existing field. We propose two kinds of strategies to accommodate these
changes. One strategy encompasses bidirectional type transformations. A bidi-
rectional type transformation allows converting back and forth between two ver-
sions of a type. Examples are String changed to StringBuffer and int to Integer.
The other strategy encompasses unidirectional type transformation. In contrast
to bidirectional type transformation, unidirectional type transformations are not
reversible. Examples are LinkedList changed to HashMap and int to float.

Both bidirectional and unidirectional type transformations may be expressed
as annotations in the new version of the class. The annotation is attached to the
corresponding field and indicates the necessary type transformation method. The
example in Fig. 3 shows the new version of class S (on the left), which changed
the type of its field from String to StringBuffer. The corresponding updating
aspect (on the right) redefines a caller method C.run() to redirect the access
using these transformation methods oldToNew() and newToOld() defined in the
delta class DeltaS (not shown).

/* Version 2 */
class S {

@BidirectionalTransformation
 (toNew=”oldToNew”, toOld=”newToOld”)
 StringBuffer msg;

 StringBuffer oldToNew(String prev) {
 return new StringBuffer(prev);
 }
 String newToOld(StringBuffer next) {
 return next.toString();
 }
}

/* Update from version 1 to version 2 */
class Update extends Aspect {
 /* Setters/getters of S, version 2 */
 void setMessage(S s, StringBuffer msg) {
 s.msg = DeltaS.newToOld(msg);
 }
 StringBuffer getMessage(S s) {
 return DeltaS.oldToNew(s.msg);
 }
 /* Redefine client using class S */
 redefine C.run() {
 S s = new S();
 setMessage(s, new StringBuffer(”hallo”));
 StringBuffer msg = getMessage(s);
 }
}

Fig. 3. Annotations for type transformations.

Unidirectional type transformations may be handled similar to field addi-
tions. The field of the new type is added to the existing object and the type
transformation function is used to initialize the added field. Consider a LinkedList
that is replaced by an array; the elements of the array can be filled with the el-
ements of the LinkedList. Field access must be reflected in the methods that use
the fields. These methods will be redefined by updating aspects.

4 Concluding remarks

We have shown how meta-data in the form of Java annotations may facilitate
software evolution. Such annotations are created along with the development

30

process and thus allow the programmer to indicate transformations while writing
the new version. Annotations can either be directly provided by the programmer
or inferred by the software development system. In the latter case, the software
development system considers actions taken by the programmer and formulates
an appropriate annotation. By including annotations and type transformations,
the software evolution system may automate program comparison and update
generation, and thus achieves a seamless evolution step.

Acknowledgments. The work presented in this paper was partially supported by the National
Competence Center in Research on Mobile Information and Communication Systems (NCCR-MICS),
a center supported by the Swiss National Science Foundation under grant number 5005-67322.

References

1. T. Apiwattanapong, A. Orso, and M. J. Harrold. A Differencing Algorithm for
Object-Oriented Programs. In 19th IEEE International Conference on Automated
Software Engineering (ASE’04), pages 2–13, 2004.

2. T. Apiwattanapong, A. Orso, and M. J. Harrold. JDiff: A Differencing Technique
and Tool for Object-Oriented Programs. Journal of Automated Software Engineer-
ing, 14(1):3–36, 2007.

3. S. Cech Previtali and T. R. Gross. Dynamic Updating of Software Systems Based
on Aspects. In 22nd IEEE International Conference on Software Maintenance
(ICSM’06), pages 83–92, 2006.

4. S. Cech Previtali and T. R. Gross. Extracting Updating Aspects from Version
Differences. In LATE ’08: Proceedings of the 2008 AOSD Workshop on Linking
Aspect Technology and Evolution, pages 1–5, New York, NY, USA, 2008. ACM.

5. I. Neamtiu, J. S. Foster, and M. Hicks. Understanding Source Code Evolution
Using Abstract Syntax Tree Matching. SIGSOFT Software Engineering Notes,
30(4):1–5, 2005.

6. I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical Dynamic Software Updat-
ing for C. In ACM SIGPLAN 2006 Conference on Programming Language Design
and Implementation (PLDI’06), pages 72–83, 2006.

7. A. Nicoară and G. Alonso. Dynamic AOP with PROSE. In International Workshop
on Adaptive and Self-Managing Enterprise Applications (ASMEA’05), pages 125–
138, 2005.

8. A. Nicoară, G. Alonso, and T. Roscoe. Controlled, Systematic, and Efficient Code
Replacement for Running Java Programs. In ACM SIGOPS/EuroSys European
Conference on Computer Systems 2008 (EuroSys’08), 2008.

9. A. Popovici, G. Alonso, and T. Gross. Just-in-time Aspects: Efficient Dynamic
Weaving for Java. In 2nd International Conference on Aspect-Oriented Software
Development (AOSD’03), pages 100–109, 2003.

10. A. Popovici, T. R. Gross, and G. Alonso. Dynamic Weaving for Aspect-Oriented
Programming. In 1st International Conference on Aspect-Oriented Software De-
velopment (AOSD’02), pages 141–147, 2002.

11. R. Robbes and M. Lanza. A Change-based Approach to Software Evolution. Elec-
tronic Notes in Theoretical Computer Science (ENTCS), 166:93–109, 2007.

12. G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu. Mutatis Mutandis: Safe
and Flexible Dynamic Software Updating. ACM Transactions on Programming
Languages and Systems (TOPLAS), 29(4), 2007.

31

32

Object Roles and Runtime Adaptation in Java

Mario Pukall

Otto-von-Guericke University, P.O. Box 4120, 39016 Magdeburg, Germany
pukall@iti.cs.uni-magdeburg.de

Abstract. Program maintenance usually decreases the programs avail-
ability. This is not acceptable for highly available applications. Thus,
such applications have to be changed at runtime. Furthermore, since it
is not predictable what changes become necessary and when they have
to be applied, highly available applications have to be enabled for unan-
ticipated runtime adaptation at deploy-time [1]. We developed an object
role-based approach which deals with these requirements.

1 Introduction

Maintenance of highly available applications, such as banking systems or security
applications, is a cost-intensive task. This is due to the fact that maintenance
usually causes time periods of unavailability. Unfortunately, such programs can
not be prepared statically (i.e., at compile or load-time) for all changes that may
become necessary at runtime [1]. For that reason highly available applications
must be enabled for unanticipated changes at deploy-time, i.e., for unanticipated
changes at already loaded program parts.

Recent work suggests different approaches for runtime program adaptation
in Java. Approaches like Javassist [2, 3] or AspectWerkz [4–6] allow unantici-
pated changes until load-time, but not at deploy-time. Other approaches allow
only for anticipated changes, e.g., object wrapping [7–11]. However, approaches
such as PROSE [12, 13] and DUSC [14] allow unanticipated changes at deploy-
time. Unfortunately, PROSE uses a modified Java virtual machine (JVM). For
that reason the utilization of this approach is restricted to environments which
support the PROSE virtual machine. DUSC lacks of object state keeping class
updates when simultaneously updating the class interface. We conclude that non
of these approaches enables stateful Java programs for unanticipated changes at
deploy-time while running in a standard JVM.

In this paper we present the basic idea of an object role-based approach which
enables stateful Java applications for unanticipated runtime adaptation even at
deploy-time. It works with the Java HotSpot virtual machine1 and combines
object wrapping and Java HotSwap2.

1 The Java HotSpot virtual machine is the standard virtual machine of Sun’s current
Java 2 platforms.

2 Java HotSwap is supported by the Java HotSpot virtual machine.

33

2 Motivating Example

Similar to static program changes, runtime program changes usually effect dif-
ferent parts of a program. Figure 1 depicts a simple program which manages
and displays sorted lists. At the moment of program start it offers the bubble
sort algorithm in order to sort a list. The length of the lists which have to be
sorted grows while the program is running. At some point of execution time it is
noticed that the bubble sort algorithm is to slow to sort the lists in reasonable
time. For that reason the bubble sort algorithm has to be replaced by a faster
sorting algorithm, e.g., the quick sort algorithm. In order to apply the required
changes class SortedList as well as class DisplayList must be modified (Figure
1).

Fig. 1. Unanticipated adaptation. Fig. 2. Programs in the HotSpot VM [15].

3 Runtime Changes and the Java Virtual Machine

To understand the restrictions and possibilities for runtime program adaptation
in the HotSpot VM it is necessary to know how a program is represented in the
virtual machine. As depicted in Figure 2 the heap of the HotSpot VM stores the
runtime data of all class instances, whereas the method area is the memory area
of the HotSpot VM which stores all class (type) specific data.

The most adequate approach to alter a running program in Java is to replace
a class in the JVM and update its objects according to the changes. However,
this is difficult to realize in the HotSpot VM, since object references, object data,
and class data are directly wired (see Figure 2). In order to replace a class in this
virtual machine all instances of the class have to be destroyed and recreated.

Beside these restrictions the HotSpot VM enables method implementation
swapping at runtime. This mechanism is called Java HotSwap and is provided

34

by the Java Virtual Machine Tool Interface [16]. Unfortunately, Java HotSwap
does not allow to remove or add methods.

4 Runtime Changes and Object Roles

To systematically adapt a running program it is necessary to identify what ob-
jects have to be changed and what changes have to be applied to each object.
We observed that the degree of changes depends on the role an object plays in
the adaptation context, whether it acts as a caller or a callee. For instance in
Figure 1 an object of class DisplayList acts as a caller (i.e., it uses functions of
class SortedList), whereas an object of class SortedList acts as a callee.

4.1 Kinds of Callee Changes.

A callees job is to offer its functions to other objects (callers). To satisfy the
requirements of its callers it may have to provide new or changed functions. For
example callee SortedList must be extended by method quickSort() in order to
speed up the display function of caller DisplayList. Due to the variety of callee
changes we believe that, in order to offer new or changed functions, nearly each
part of a callee has to be changeable.

4.2 Kinds of Caller Changes.

The reason for changing an object in its role as a caller is to call new, changed,
or alternative functions provided by the callees it owns. These calls are largely
implemented within the callers methods. For that reason changing a caller only
requires modifications of the caller method implementation that contains the
function call chosen for adaptation. For instance in our scenario method display()
of class DisplayList has to be changed in order to call method quickSort() instead
of method bubbleSort() of class SortedList.

5 Object Wrapping and Java HotSwap

In the following we present the basic idea of a runtime program adaptation
approach which serves the required changes at objects playing role callee and
objects playing role caller.

5.1 Callee Adaptation using Object Wrapping

An appropriate strategy for runtime callee adaptation is object wrapping. It
means to embed the callee within another object denoted as wrapper. Within
the wrapping the callee still provides its functions as usual, whereas the wrapper
adds the necessary changes. Compared to the strategy of class replacement (as
suggested in Section 3) object wrapping induces two major advantages. First,

35

the callee’s class must not be unloaded, redefined and reloaded, i.e., the class
instances must not be destroyed and recreated. Second, the callee keeps its state.

Remembering our motivating example from Section 2 a callee of type Sort-
edList can be extended via a wrapping such as shown in Figure 3. Here wrapper
SortedListWrap adds the required quick sort algorithm (method quickSort()),
while it forwards calls to method bubbleSort() of callee SortedList. The han-
dover of the callee reference happens in the constructor of the wrapper.

Fig. 3. Callee adaptation via wrapping. Fig. 4. Caller adaptation via Java HotSwap.

5.2 Caller Adaptation using Java HotSwap

While callee adaptation can be achieved using object wrapping, two open issues
exist. First, the wrapping must be deployed. Second, the function calls of the
caller have to be changed. Both tasks can be performed using Java HotSwap.
Figure 4 illustrates the procedure according our motivating example. In order
to apply the quick sort algorithm to DisplayList the implementation of method
display() is swapped. The new method implementation wraps callee SortedList
by wrapper SortedListWrap and calls the quickSort() method.

6 Conclusion and Future Work

In this paper we proposed unanticipated runtime program adaptation at deploy-
time as an issue of changing objects. We suggested that the necessary degree
of object changes depends on the role an object plays, i.e., whether it acts as
caller or callee. Unfortunately, standard Java virtual machines, such as the Java
HotSpot virtual machine, do not natively offer functions for all required ob-
ject changes. For that reason we developed an approach which serves the whole
bandwidth of required object changes. It combines object wrapping and Java
HotSwap in order to enable unanticipated runtime adaptation at deploy-time.

Even though the basic approach presented in this paper is suitable for many
use cases, a lot of open questions exist. In current work we look into how to

36

achieve consistency and how to apply persistent wrappings. We also evaluate the
execution speed of programs which are modified using our runtime adaptation
approach.

References

1. Pukall, M., Kuhlemann, M.: Characteristics of runtime program evolution. In
Cazzola, W., Chiba, S., Coady, Y., Ducasse, S., Kniesel, G., Oriol, M., Saake, G.,
eds.: Proceedings of ECOOP’2007 Workshop on Reflection, AOP and Meta-Data
for Software Evolution (RAM-SE’07), Berlin, Germany (2007) 51–57

2. Chiba, S., Nishizawa, M.: An easy-to-use toolkit for efficient java bytecode trans-
lators. In: Proceedings of the second International Conference on Generative Pro-
gramming and Component Engineering (GPCE’03). (2003)

3. Chiba, S.: Load-time structural reflection in java. Lecture Notes in Computer
Science (2000)

4. Vasseur, A.: Dynamic aop and runtime weaving for java – how does aspectwerkz
address it? In: DAW: Dynamic Aspects Workshop. (2004)

5. Bonér, J.: Aspectwerkz – dynamic aop for java. Invited talk at 3rd International
Conference on Aspect-Oriented Software Development (AOSD). (2004)

6. Bonér, J.: What are the key issues for commercial aop use: how does aspectwerkz
address them? In: Proceedings of the 3rd International Conference on Aspect-
Oriented Software Development (AOSD). (2004)

7. Hunt, J., Sitaraman, M.: Enhancements: Enabling flexible feature and implemen-
tation selection. In: Proceedings of the 8th International Conference on Software
Reuse (ICSR’04). Lecture Notes in Computer Science, Springer (2004) 86–100

8. Kniesel, G.: Type-safe delegation for run-time component adaptation. In: Pro-
ceedings of the 13th European Conference on Object-Oriented Programming
(ECOOP’99), London, UK, Springer-Verlag (1999) 351–366

9. Bettini, L., Capecchi, S., Venneri, B.: Extending java to dynamic object behaviors.
In: Proceedings of the ETAPS’2003 Workshop on Object-Oriented Developments
(WOOD’03). Volume 82 of ENTCS. (2003)

10. Büchi, M., Weck, W.: Generic wrappers. In Bertino, E., ed.: Proceedings of
the 14th European Conference on Object-Oriented Programming (ECOOP’00).
Volume 1850 of LNCS. (2000) 201–225

11. Bettini, L., Capecchi, S., Giachino, E.: Featherweight wrap java. In: Proceedings
of the 2007 ACM symposium on Applied computing (SAC’07), New York, NY,
USA, ACM (2007) 1094–1100

12. Nicoara, A., Alonso, G., Roscoe, T.: Controlled, systematic, and efficient code
replacement for running java programs. In Sventek, J., Hand, S., eds.: Proceedings
of the 2008 EuroSys Conference, ACM (2008) 233–246

13. Nicoara, A., Alonso, G.: Dynamic aop with prose. In Castro, J., Teniente, E.,
eds.: Proceedings of the CAiSE’2005 Workshop on Adaptive and Self-Managing
Enterprise Applications (ASMEA’05), FEUP Edições, Porto (2005) 125–138

14. Orso, A., Rao, A., Harrold, M.: A technique for dynamic updating of java soft-
ware. In: Proceedings of the International Conference on Software Maintenance
(ICSM’02), Washington, DC, USA, IEEE Computer Society (2002) 649–658

15. Venners, B.: Inside the Java 2 Virtual Machine. Computing McGraw-Hill. (2000)
16. Sun: Java virtual machine tool interface version 1.1. Technical report, Sun Mi-

crosystems (2006) http://java.sun.com/javase/6/docs/platform/jvmti/jvmti.html.

37

	Cover
	Foreword
	TOC
	A Case Study for Aspect-Based Updating
	Runtime Adaptations within the Quad2-Framwork
	Modeling context-dependent aspect interference using default logics
	Exploring Role-Based Adaptation
	Annotations for Seamless Aspect-Based Software Evolution
	Object Roles and Runtime Adaptation in Java

